[ 3 / biz / cgl / ck / diy / fa / ic / jp / lit / sci / vr / vt ] [ index / top / reports ] [ become a patron ] [ status ]
2023-11: Warosu is now out of extended maintenance.

/sci/ - Science & Math


View post   

File: 191 KB, 800x563, flat,800x800,075,f.u1.jpg [View same] [iqdb] [saucenao] [google]
9546797 No.9546797 [Reply] [Original]

I wish to learn of a path to conquering - and innovating mathematics. I wish to read all I can, but it helps that I don't waste my time reading inconsequential drivel.

I know there were some pictures of "flowcharts" to learning mathematics floating around here, but I failed to save them. Is there an optimal path to a complete understanding of mathematics? If so, I wish for you to please share with me. I invite and encourage all discussion here.

I am what you call a "turbo autist", so please start off with the most rudimentary of rudimentary, then work your way up.

>> No.9546808

High School:
• Euclidean geometry, complex numbers, scalar multiplication, Cauchy-Bunyakovskii inequality. Introduction to quantum mechanics (Kostrikin-Manin). Groups of transformations of a plane and space. Derivation of trigonometric identities. Geometry on the upper half-plane (Lobachevsky). Properties of inversion. The action of fractional-linear transformations.
• Rings, fields. Linear algebra, finite groups, Galois theory. Proof of Abel's theorem. Basis, rank, determinants, classical Lie groups. Dedekind cuts. Construction of real and complex numbers. Definition of the tensor product of vector spaces.
• Set theory. Zorn's lemma. Completely ordered sets. Cauchy-Hamel basis. Cantor-Bernstein theorem.
• Metric spaces. Set-theoretic topology (definition of continuous mappings, compactness, proper mappings). Definition of compactness in terms of convergent sequences for spaces with a countable base. Homotopy, fundamental group, homotopy equivalence.
• p-adic numbers, Ostrovsky's theorem, multiplication and division of p-adic numbers by hand.
• Differentiation, integration, Newton-Leibniz formula. Delta-epsilon formalism.

>> No.9546810

>>9546808
Freshman:
• Analysis in R^n. Differential of a mapping. Contraction mapping lemma. Implicit function theorem. The Riemann-Lebesgue integral. ("Analysis" by Laurent Schwartz, "Analysis" by Zorich, "Theorems and Problems in Functional Analysis" by Kirillov-Gvishiani)
• Hilbert spaces, Banach spaces (definition). The existence of a basis in a Hilbert space. Continuous and discontinuous linear operators. Continuity criteria. Examples of compact operators. ("Analysis" by Laurent Schwartz, "Analysis" by Zorich, "Theorems and Problems in Functional Analysis" by Kirillov-Gvishiani)
• Smooth manifolds, submersions, immersions, Sard's theorem. The partition of unity. Differential topology (Milnor-Wallace). Transversality. Degree of mapping as a topological invariant.
• Differential forms, the de Rham operator, the Stokes theorem, the Maxwell equation of the electromagnetic field. The Gauss-Ostrogradsky theorem as a particular example.
• Complex analysis of one variable (according to the book of Henri Cartan or the first volume of Shabat). Contour integrals, Cauchy's formula, Riemann's theorem on mappings from any simply-connected subset C to a circle, the extension theorem, Little Picard Theorem. Multivalued functions (for example, the logarithm).
• The theory of categories, definition, functors, equivalences, adjoint functors (Mac Lane, Categories for the working mathematician, Gelfand-Manin, first chapter).
• Groups and Lie algebras. Lie groups. Lie algebras as their linearizations. Universal enveloping algebra, Poincaré-Birkhoff-Witt theorem. Free Lie algebras. The Campbell-Hausdorff series and the construction of a Lie group by its algebra (yellow Serre, first half).

>> No.9546811

>>9546810
Sophomore:
• Algebraic topology (Fuchs-Fomenko). Cohomology (simplicial, singular, de Rham), their equivalence, Poincaré duality, homotopy groups. Dimension. Fibrations (in the sense of Serre), spectral sequences (Mishchenko, "Vector bundles ...").
• Computation of the cohomology of classical Lie groups and projective spaces.
• Vector bundles, connectivity, Gauss-Bonnet formula, Euler, Chern, Pontryagin, Stiefel-Whitney classes. Multiplicativity of Chern characteristic. Classifying spaces ("Characteristic Classes", Milnor and Stasheff).
• Differential geometry. The Levi-Civita connection, curvature, algebraic and differential identities of Bianchi. Killing fields. Gaussian curvature of a two-dimensional Riemannian manifold. Cellular decomposition of loop space in terms of geodesics. The Morse theory on loop space (Milnor's Morse Theory and Arthur Besse's Einstein Manifolds). Principal bundles and connections on them.
• Commutative algebra (Atiyah-MacDonald). Noetherian rings, Krull dimension, Nakayama lemma, adic completion, integrally closed, discrete valuation rings. Flat modules, local criterion of flatness.
• The Beginning of Algebraic Geometry. (The first chapter of Hartshorne or Shafarevich or green Mumford). Affine varieties, projective varieties, projective morphisms, the image of a projective variety is projective (via resultants). Sheaves. Zariski topology. Algebraic manifold as a ringed space. Hilbert's Nullstellensatz. Spectrum of a ring.
• Introduction to homological algebra. Ext, Tor groups for modules over a ring, resolvents, projective and injective modules (Atiyah-MacDonald). Construction of injective modules. Grothendieck Duality (from the book Springer Lecture Notes in Math, Grothendieck Duality, numbers 21 and 40).
• Number theory; Local and global fields, discriminant, norm, group of ideal classes (blue book of Cassels and Frohlich).

>> No.9546813

>>9546811
Sophomore (cont):
• Reductive groups, root systems, representations of semisimple groups, weights, Killing form. Groups generated by reflections, their classification. Cohomology of Lie algebras. Computing cohomology in terms of invariant forms. Singular cohomology of a compact Lie group and the cohomology of its algebra. Invariants of classical Lie groups. (Yellow Serre, the second half, Hermann Weyl, "The Classical Groups: Their Invariants and Representations"). Constructions of special Lie groups. Hopf algebras. Quantum groups (definition).

Junior:
• K-theory as a cohomology functor, Bott periodicity, Clifford algebras. Spinors (Atiyah's book "K-Theory" or AS Mishchenko "Vector bundles and their applications"). Spectra. Eilenberg-MacLane Spaces. Infinite loop spaces (according to the book of Switzer or the yellow book of Adams or Adams "Lectures on generalized cohomology", 1972).
• Differential operators, pseudodifferential operators, symbol, elliptic operators. Properties of the Laplace operator. Self-adjoint operators with discrete spectrum. The Green's operator and applications to the Hodge theory on Riemannian manifolds. Quantum mechanics. (R. Wells's book on analysis or Mishchenko "Vector bundles and their application").
• The index formula (Atiyah-Bott-Patodi, Mishchenko), the Riemann-Roch formula. The zeta function of an operator with a discrete spectrum and its asymptotics.
• Homological algebra (Gel'fand-Manin, all chapters except the last chapter). Cohomology of sheaves, derived categories, triangulated categories, derived functor, spectral sequence of a double complex. The composition of triangulated functors and the corresponding spectral sequence. Verdier's duality. The formalism of the six functors and the perverse sheaves.

>> No.9546819

>>9546813
Junior (cont):
• Algebraic geometry of schemes, schemes over a ring, projective spectra, derivatives of a function, Serre duality, coherent sheaves, base change. Proper and separable schemes, a valuation criterion for properness and separability (Hartshorne). Functors, representability, moduli spaces. Direct and inverse images of sheaves, higher direct images. With proper mapping, higher direct images are coherent.
• Cohomological methods in algebraic geometry, semicontinuity of cohomology, Zariski's connectedness theorem, Stein factorization.
• Kähler manifolds, Lefschetz's theorem, Hodge theory, Kodaira's relations, properties of the Laplace operator (chapter zero of Griffiths-Harris, is clearly presented in the book by André Weil, "Kähler manifolds"). Hermitian bundles. Line bundles and their curvature. Line bundles with positive curvature. Kodaira-Nakano's theorem on the vanishing of cohomology (Griffiths-Harris).
• Holonomy, the Ambrose-Singer theorem, special holonomies, the classification of holonomies, Calabi-Yau manifolds, Hyperkähler manifolds, the Calabi-Yau theorem.
• Spinors on manifolds, Dirac operator, Ricci curvature, Weizenbeck-Lichnerovich formula, Bochner's theorem. Bogomolov's theorem on the decomposition of manifolds with zero canonical class (Arthur Besse, "Einstein varieties").
• Tate cohomology and class field theory (Cassels-Fröhlich, blue book). Calculation of the quotient group of a Galois group of a number field by the commutator. The Brauer Group and its applications.
• Ergodic theory. Ergodicity of billiards.
• Complex curves, pseudoconformal mappings, Teichmüller spaces, Ahlfors-Bers theory (according to Ahlfors's thin book).

>> No.9546822

>>9546819
Senior:
• Rational and profinite homotopy type. The nerve of the etale covering of the cellular space is homotopically equivalent to its profinite type. Topological definition of etale cohomology. Action of the Galois group on the profinite homotopy type (Sullivan, "Geometric topology").
• Etale cohomology in algebraic geometry, comparison functor, Henselian rings, geometric points. Base change. Any smooth manifold over a field locally in the etale topology is isomorphic to A^n. The etale fundamental group (Milne, Danilov's review from VINITI and SGA 4 1/2, Deligne's first article).
• Elliptic curves, j-invariant, automorphic forms, Taniyama-Weil conjecture and its applications to number theory (Fermat's theorem).
• Rational homotopies (according to the last chapter of Gel'fand-Manin's book or Griffiths-Morgan-Long-Sullivan's article). Massey operations and rational homotopy type. Vanishing Massey operations on a Kahler manifold.
• Chevalley groups, their generators and relations (according to Steinberg's book). Calculation of the group K_2 from the field (Milnor, Algebraic K-Theory).
• Quillen's algebraic K-theory, BGL^+ and Q-construction (Suslin's review in the 25th volume of VINITI, Quillen's lectures - Lecture Notes in Math. 341).
• Complex analytic manifolds, coherent sheaves, Oka's coherence theorem, Hilbert's nullstellensatz for ideals in a sheaf of holomorphic functions. Noetherian ring of germs of holomorphic functions, Weierstrass's theorem on division, Weierstrass's preparation theorem. The Branched Cover Theorem. The Grauert-Remmert theorem (the image of a compact analytic space under a holomorphic morphism is analytic). Hartogs' theorem on the extension of an analytic function. The multidimensional Cauchy formula and its applications (the uniform limit of holomorphic functions is holomorphic).

>> No.9546824

>>9546822
Specialist: (Fifth year of College):
• The Kodaira-Spencer theory. Deformations of the manifold and solutions of the Maurer-Cartan equation. Maurer-Cartan solvability and Massey operations on the DG-Lie algebra of the cohomology of vector fields. The moduli spaces and their finite dimensionality (see Kontsevich's lectures, or Kodaira's collected works). Bogomolov-Tian-Todorov theorem on deformations of Calabi-Yau.
• Symplectic reduction. The momentum map. The Kempf-Ness theorem.
• Deformations of coherent sheaves and fiber bundles in algebraic geometry. Geometric theory of invariants. The moduli space of bundles on a curve. Stability. The compactifications of Uhlenbeck, Gieseker and Maruyama. The geometric theory of invariants is symplectic reduction (the third edition of Mumford's Geometric Invariant Theory, applications of Francis Kirwan).
• Instantons in four-dimensional geometry. Donaldson's theory. Donaldson's Invariants. Instantons on Kähler surfaces.
• Geometry of complex surfaces. Classification of Kodaira, Kähler and non-Kähler surfaces, Hilbert scheme of points on a surface. The criterion of Castelnuovo-Enriques, the Riemann-Roch formula, the Bogomolov-Miyaoka-Yau inequality. Relations between the numerical invariants of the surface. Elliptic surfaces, Kummer surface, surfaces of type K3 and Enriques.
• Elements of the Mori program: the Kawamata-Viehweg vanishing theorem, theorems on base point freeness, Mori's Cone Theorem (Clemens-Kollar-Mori, "Higher dimensional complex geometry" plus the not translated Kollar-Mori and Kawamata-Matsuki-Masuda).
• Stable bundles as instantons. Yang-Mills equation on a Kahler manifold. The Donaldson-Uhlenbeck-Yau theorem on Yang-Mills metrics on a stable bundle. Its interpretation in terms of symplectic reduction. Stable bundles and instantons on hyper-Kähler manifolds; An explicit solution of the Maurer-Cartan equation in terms of the Green operator.

>> No.9546825

>>9546824
Specialist (cont):
• Pseudoholomorphic curves on a symplectic manifold. Gromov-Witten invariants. Quantum cohomology. Mirror hypothesis and its interpretation. The structure of the symplectomorphism group (according to the article of Kontsevich-Manin, Polterovich's book "Symplectic geometry", the green book on pseudoholomorphic curves and lecture notes by McDuff and Salamon)
• Complex spinors, the Seiberg-Witten equation, Seiberg-Witten invariants. Why the Seiberg-Witten invariants are equal to the Gromov-Witten invariants.
• Hyperkähler reduction. Flat bundles and the Yang-Mills equation. Hyperkähler structure on the moduli space of flat bundles (Hitchin-Simpson).
• Mixed Hodge structures. Mixed Hodge structures on the cohomology of an algebraic variety. Mixed Hodge structures on the Maltsev completion of the fundamental group. Variations of mixed Hodge structures. The nilpotent orbit theorem. The SL(2)-orbit theorem. Closed and vanishing cycles. The exact sequence of Clemens-Schmid (Griffiths red book "Transcendental methods in algebraic geometry").
• Non-Abelian Hodge theory. Variations of Hodge structures as fixed points of C^*-actions on the moduli space of Higgs bundles (Simpson's thesis).
• Weil conjectures and their proof. l-adic sheaves, perverse sheaves, Frobenius automorphism, weights, the purity theorem (Beilinson, Bernstein, Deligne, plus Deligne, Weil conjectures II)
• The quantitative algebraic topology of Gromov, (Gromov "Metric structures for Riemannian and non-Riemannian spaces"). Gromov-Hausdorff metric, the precompactness of a set of metric spaces, hyperbolic manifolds and hyperbolic groups, harmonic mappings into hyperbolic spaces, the proof of Mostow's rigidity theorem (two compact Kählerian manifolds covered by the same symmetric space X of negative curvature are isometric if their fundamental groups are isomorphic, and dim X> 1).
• Varieties of general type, Kobayashi and Bergman metrics, analytic rigidity (Siu)

>> No.9546832

thx, saved

>> No.9547246

>>9546797
Broadly speaking, the three fields you must be well-versed in before you begin graduate-level work and find/decide on a specialization are real analysis, abstract algebra, and topology. None of them have any "real" prerequisites at the "advanced undergraduate"/"beginning graduate" level, but for instance real analysis was an outgrowth of efforts to formalize and rigorously prove the methods of calculus, topology was in part motivated by the desire to investigate continuity in settings more general than the metric spaces of analysis, and so on. This means that for instance analysis will be more intuitive and satisfying (and suitable as an introduction to proof reading and writing) if you know some cookbook calculus (plug and chug) which is usually a high school or first year university course. Of course to understand that you need to be comfortable with elementary algebra. If you're not, just about any "precalculus" book will do.
The only essential prerequisite for those three subjects for quite a while is mathematical maturity, though. The "flowchart" as you describe it doesn't really exist, but you will begin to develop your own metacognitive map of how different parts of math relate to one another the more you study it, and this will help guide you to what specialization you are most interested in.

>> No.9548028

>>9547246
This. Essentially OP, you need to learn enough math and be comfortable enough with manipulations of formulae so that you can start reading introductory Analysis and Abstract Algebra. At that point, your foot is in the door, and as you learn more on these subjects, your "mathematical maturity" will improve enough that you can move on to harder material.

This is what I would do: Spend time with some precalculus book, just about any will do. But do the bare minimum. From there, move on and do some cookbook calculus and read an intro to proofs book. Then find a book on introductory analysis (with metric space topology) and a book on abstract algebra. Work through them. It will be hard. You will feel stupid. But once you have done this, you will be mature enough to have your own questions and opinions. From there, start looking at graduate texts in analysis, algebra and topology. Explore other fields that seem interesting. Number theory always comes up, and having a robust understanding of probability and statistics is good too.

There is no way to learn all of math. Books will only get you up to date to like the 1950's. To ge on the real cutting edge, modern maths, you can only do one thing -- you have to find and read journal articles. And for that, you really need to be at a university. Good luck.

>> No.9548032

>>9546797
Just study analysis, doing that you'll run into everything that's relevant/important sooner or later. Everything else is inconsequential autistic drivel.

>> No.9548211

Be born with 150+ IQ, otherwise give up ridiculous notions of a "complete understanding of Mathematics"... At best you'd be memorizing formulas.

>> No.9548506

>>9546797
Find the smallest confirmed particle in physics. Learn its geometry, tragectories and math. Find the biggest confirmed object in our universe. (including itself) then fill in the gaps until you get to our universe.

>> No.9548520
File: 400 KB, 1800x1800, It's Flat.jpg [View same] [iqdb] [saucenao] [google]
9548520

>>9546797 >>9548506
prove that Earth is flat

>> No.9548525

>>9548520
The earth is flat from the perspective of space and time being like a sheet of paper. One can theoretically bend this sheet and thus from a relativistic perspective the earth is flatter than this said sheet of paper.

>> No.9548530

>>9548525
>>9548520

:^D