[ 3 / biz / cgl / ck / diy / fa / ic / jp / lit / sci / vr / vt ] [ index / top / reports ] [ become a patron ] [ status ]
2023-11: Warosu is now out of extended maintenance.

/sci/ - Science & Math


View post   

File: 382 KB, 640x480, Asuka_smiling.png [View same] [iqdb] [saucenao] [google]
9177334 No.9177334 [Reply] [Original]

Let A be a non empty subset of [math]\mathbb{R}[/math]. Suppose that there exists a sequence of real numbers [math]x_n[/math] such that:
i) every term of [math]x_n[/math] is an upper bound of A
ii) [math]x_n \rightarrow a[/math] for some [math]a \in A[/math].

prove that [math]a=max\{A \}[/math].

>> No.9177347

if it seems easy what's your proof?

>> No.9177352

I'm confused what exactly you're asking for, OP.

>> No.9177355

>>9177334
Proof by contradiction:
suppose sup(A) > a
then there is exists b > a in A

define \epsilon := (b-a)/2

since x\_n -> a there exists some i so that | x\_i - a | < \epsilon. then x\_i < b which contradicts the assumption i)

>> No.9177358
File: 63 KB, 394x440, 599.png [View same] [iqdb] [saucenao] [google]
9177358

>>9177355
i can't into formating

>> No.9177359

>>9177355
Starting from the assumption that sup(A) > a is wrong.

>> No.9177361

>>9177347
as a non empty subset of [math]\mathbb{R}[/math] A has a supremum [math]s:=supA[\math]. So: [math]\forall \epsilon >0 , \exists a \in A: s - \epsilon < a< s[/math]. Also, [math]\forall \epsilon >0 \exists n_0 (\epsilon): \forall n>n_0 (\epsilon) : \left|x_n - a \right|<\epsilon[/math]. Rewritting the inequalities, and using the fact that [math]x_n[/math] is an upper bound of A we can show that [math]a=s=supA[/math] and because [math]a=supA \in A[/math] , [math]a=max\{ A \}[/math] . QED?

>> No.9177362

>>9177355
Ignore me >>9177359, I must have just had a stroke.

>> No.9177364

>>9177362
kek