[ 3 / biz / cgl / ck / diy / fa / ic / jp / lit / sci / vr / vt ] [ index / top / reports ] [ become a patron ] [ status ]
2023-11: Warosu is now out of extended maintenance.

/sci/ - Science & Math


View post   

File: 5 KB, 251x230, 1328243967388.jpg [View same] [iqdb] [saucenao] [google]
4437049 No.4437049 [Reply] [Original]

Hey /sci/,

You guys really helped me yesterday, so I come again for (hopefully) one more problem that I'm fucking clueless on. I'm supposed to show by direct substitution/differentiation that the Green's function <span class="math">G(\mathbf{r}) = \frac{i}{8 \pi^{2} r} \left [ \left ( i \pi e^{ikr} \right ) - \left ( - i \pi e^{ikr} \right ) \right ] = - \frac{e^{ikr}}{4 \pi r}[/spoiler] satifies <span class="math">(\nabla^{2} + k^{2})G(\mathbf{r}) = \delta^{3}(\mathbf{r})[/spoiler]. This bitch is reminiscent of electrodynamics so I don't know why my prof pulled this one on me. I don't even know where to start as I haven't even seen a regular proof for this. Any suggestions?

>> No.4437079
File: 23 KB, 500x378, funny-guido-pictures-guido-fish-lips.jpg [View same] [iqdb] [saucenao] [google]
4437079

Bump

>> No.4437099
File: 33 KB, 600x450, GuidoOompa.jpg [View same] [iqdb] [saucenao] [google]
4437099

Please /sci/ I know you guys can do this.

I'm running out of guidos

>> No.4437118
File: 19 KB, 235x243, guido-facial-hair.jpg [View same] [iqdb] [saucenao] [google]
4437118

Another bump.

>> No.4437156

Please? :(

>> No.4437160

Don't know how to do this, bro

>> No.4437166

/Sci/ is high school students and undergraduates.

>> No.4437179
File: 78 KB, 560x522, Guido-with-fake-tan-e1291269816772.jpg [View same] [iqdb] [saucenao] [google]
4437179

>>4437166
But this is undergraduate :(

>> No.4437182

>>4437166
and by undergraduates we mean jobless basement dwellers with less than 60k points on khan academy

>> No.4437236

<div class="math">G = - \frac{e^{ikr}}{4 \pi r} \Rightarrow \nabla G = - \frac{1}{4 \pi} \left ( \frac{1}{r} \nabla e^{ikr} + e^{ikr} \nabla \frac{1}{r} \right ) \Rightarrow</div>
<div class="math">\nabla^{2} G = \nabla \cdot (\nabla G) = - \frac{1}{4 \pi} \left [ 2 \left ( \nabla \frac{1}{r} \right ) \cdot (\nabla e^{ikr}) + \frac{1}{r} \nabla^{2} (e^{ikr}) \nabla^{2} \left ( \frac{1}{r} \right ) \right ]</div>
we know
<div class="math">\nabla \frac{1}{r} = - \frac{1}{r^{2}} \hat{r};~ \nabla(e^{ikr}) = ike^{ikr} \hat{r}; ~ \nabla^{2} e^{ikr} = ik \nabla \cdot (e^{ikr} \hat{r}) = ik \frac{1}{r^{2}} \frac{d}{dr} (r^{2} e^{ikr})</div>
<div class="math">\Rightarrow \nabla^{2} e^{ikr} = \frac{ik}{r^{2}} (2re^{ikr} + ikr^{2} e^{ikr}) = ike^{ikr} \left ( \frac{2}{r} + ik \right ); ~ \nabla^{2} \left ( \frac{1}{r} \right ) = -4 \pi \delta^{3}(\mathbf(r))</div>
so
<div class="math">\nabla^{2} G = - \frac{1}{4 \pi} \left [ 2 \left ( - \frac{1}{r^{2}} \hat{r} \right ) \cdot (ike^{ikr} \hat{r}) + \frac{1}{r} ike^{ikr} \left ( \frac{2}{r} + ik \right ) - 4 \pi e^{ikr} \delta^{3} (\mathbf{r}) \right ]</div>
<div class="math">\nabla^{2} G = \delta^{3} (\mathbf{r}) - \frac{1}{4 \pi} e^{ikr} \left [ - \frac{2ik}{r^{2}} + \frac{2ik}{r^{2}} - \frac{k^{2}}{r} \right ] = \delta^{3} (\mathbf{r}) + k^{2} \frac{e^{ikr}}{4 \pi r} = \delta^{3} (\mathbf{r}) - k^{2} G</div>
<div class="math">(\nabla^{2} + k^{2})G = \delta^{3} (\mathbf{r})</div>
qed

>> No.4437302

>>4437236
Wow, thank you! How did you get from <span class="math">\nabla^{2} G = - \frac{1}{4 \pi} \left [ 2 \left ( - \frac{1}{r^{2}} \hat{r} \right ) \cdot (ike^{ikr} \hat{r}) + \frac{1}{r} ike^{ikr} \left ( \frac{2}{r} + ik \right ) - 4 \pi e^{ikr} \delta^{3} (\mathbf{r}) \right ][/spoiler] to <span class="math">\nabla^{2} G = \delta^{3} (\mathbf{r}) - \frac{1}{4 \pi} e^{ikr} \left [ - \frac{2ik}{r^{2}} + \frac{2ik}{r^{2}} - \frac{k^{2}}{r} \right ] = \delta^{3} (\mathbf{r}) + k^{2} \frac{e^{ikr}}{4 \pi r} = \delta^{3} (\mathbf{r}) - k^{2} G[/spoiler] though?

>> No.4437318
File: 240 KB, 442x531, 1331013269098.png [View same] [iqdb] [saucenao] [google]
4437318

>>4437302
simple simplification -
<div class="math">e^{ikr} \delta^{3} (\mathbf{r}) = \delta^{3} (\mathbf{r})</div>