[ 3 / biz / cgl / ck / diy / fa / ic / jp / lit / sci / vr / vt ] [ index / top / reports ] [ become a patron ] [ status ]
2023-11: Warosu is now out of extended maintenance.

/sci/ - Science & Math


View post   

File: 8 KB, 220x353, int.png [View same] [iqdb] [saucenao] [google]
4229278 No.4229278 [Reply] [Original]

Let's see some integrals, /sci/.

<span class="math">\int_0^{2\pi} e^{\cos\theta}\cos(n \theta - \sin\theta) = \frac{2\pi}{n!}[/spoiler]

>> No.4229299

>this thread makes me moist
<div class="math">\int_{0}^{1} \frac{dx}{x^x} = \sum_{n=1}^{\infty} \frac{1}{n^n}[/moot]

>> No.4229322

Borwein integrals!
<div class="math"> \int_0^\infty \frac{\sin(x)}{x} \, dx=\pi/2 [/moot]<div class="math"> \int_0^\infty \frac{\sin(x)}{x}\frac{\sin(x/3)}{x/3} \, dx = \pi/2 [/moot]<div class="math"> \int_0^\infty \frac{\sin(x)}{x}\frac{\sin(x/3)}{x/3}\frac{\sin(x/5)}{x/5} \, dx = \pi/2 [/moot]<div class="math">\quad\vdots[/moot]<div class="math"> \int_0^\infty \frac{\sin(x)}{x}\frac{\sin(x/3)}{x/3}\cdots\frac{\sin(x/13)}{x/13} \, dx = \pi/2 [/moot]<div class="math">
\int_0^\infty \frac{\sin(x)}{x}\frac{\sin(x/3)}{x/3}\cdots\frac{\sin(x/15)}{x/15} \, dx = \frac{467807924713440738696537864469}{935615849440640907310521750000}\pi [/moot]
http://en.wikipedia.org/wiki/Borwein_integral

>> No.4229331

solve it without mathematica

<div class="math">\int_{0}^{1} \frac{1}{x}-floor(\frac{1}{x})[/moot]

..go

>> No.4229334

>>4229322

It's funny because the slashes almost line up.

>> No.4229341

>>4229331
<div class="math">\int_{0}^{1} \frac{1}{x}-floor(\frac{1}{x}) \, dt= \frac{1}{x}-floor(\frac{1}{x})[/moot]

>> No.4229347

>>4229322
otherwise known as troll integrals

>> No.4229351

>>4229341
0/10

>> No.4229363

>>4229331
Is there some nice solution to this? Also \lfloor, \rfloor:
<div class="math">\int_0^1\mathrm dx\left(\frac1x-\left\lfloor\frac1x\right\rfloor\right)[/moot]

>> No.4229371

<div class="math">\int_{1}^{e} \frac{1}{x} dx = 1[/moot]

Babby-tier, inbound.

>> No.4229379

>>4229347
this one always gets me hard
<div class="math">\int_{0}^{\pi}\int_{0}^{\pi}\int_{0}^{\pi} \frac{du\, dv\, dw}{3-\cos (u)-\cos (v)-\cos (w)}=\frac{\sqrt{6}}{96} \Gamma\left ( \frac{1}{24}\right ) \Gamma\left ( \frac{5}{24}\right ) \Gamma\left ( \frac{7}{24}\right ) \Gamma\left ( \frac{11}{24}\right ) [/moot]

>> No.4229383

>>4229379
http://mathworld.wolfram.com/WatsonsTripleIntegrals.html

>> No.4229385

>>4229322
Interesting fact, those terms are even so the integral from negative infinity to positive infinity is pi.

>> No.4229386

>>4229331
is this some kind of troll math? it froze my mathcad

>> No.4229387

<div class="math">s=\int \sqrt{g_{\mu \nu}dx^\mu dx^\nu }[/moot]

>> No.4229397

<div class="math">\int_0^1\mathrm dx\left(\frac1x-\left\lfloor\frac1x\right\rfloor\right)=\sum_{k=1}^{\infty} \int_{1 \over k+1}^{1 \over k}\mathrm dx\left(\frac1x-\left\lfloor\frac1x\right\rfloor\right) =\sum_{k=1}^{\infty}\left( \ln \left( {k+1 \over k} \right) +1 \right)= \infty[/moot]

>> No.4229409 [DELETED] 

>>4229397
<div class="math">\int_0^1\mathrm dx\left(\frac1x-\left\lfloor\frac1x\right\rfloor\right)=\sum_{k=1}^{\infty} \int_{1 \over k+1}^{1 \over k}\mathrm dx\left(\frac1x-\left\lfloor\frac1x\right\rfloor\right) =\sum_{k=1}^{\infty} \ln \left( {k+1 \over k} \right) = \lim_{k \to \infty} \ln(k+1)=\infty[/moot]

>fixed

>> No.4229415

>>4229409
Sounds like what I'd do, indeed.

>> No.4229425

>>4229397
Since <span class="math">\frac1x\geq\left\lfloor\frac1x\right\rfloor[/spoiler], <span class="math">0\leq\frac1x-\left\lfloor\frac1x\right\rfloor[/spoiler]; because in general <span class="math">x-\lfloor x\rfloor\leq1[/spoiler] we get the estimate <span class="math">0\leq\frac1x-\left\lfloor\frac1x\right\rfloor<1[/spoiler], so the integral is finite.
Not sure where the error in the calculation above is though.

>> No.4229427

<div class="math">
\int_0^1\mathrm dx\left(\frac1x-\left\lfloor\frac1x\right\rfloor\right)=\sum_{k=1}^{\infty} \int_{1 \over k+1}^{1 \over k}\mathrm dx\left(\frac1x-\left\lfloor\frac1x\right\rfloor\right) =\sum_{k=1}^{\infty}\left( \ln \left( {k+1 \over k} \right) +{1 \over k} \right)= \gamma[/moot]

>> No.4229429

>>4229427
-1/k instead of +1/k obviously.

>> No.4229434

>>4229429
Dammit. I knew it looked like the integral definition of <span class="math">\gamma[/spoiler], but couldn't find out how to get there.

>> No.4229438

Fuckin' nerds.

>> No.4229447

>>4229427
On second thought, why's that <span class="math">\gamma[/spoiler]? The argument of the log is kind of weird. Plus my numerical results say there's something like <span class="math">0.42[/spoiler] coming out, whereas <span class="math">\gamma[/spoiler] is <span class="math">0.58[/spoiler].

>> No.4229467

>>4229447
<div class="math">
\sum_{k=1}^{\infty}\left( \ln \left( {k+1 \over k} \right) -{1 \over k} \right)=\lim_{K \to \infty}\sum_{k=1}^{K}\left( \ln \left( {k+1 \over k} \right) -{1 \over k} \right)=\lim_{K \to \infty} \left( \sum_{k=1}^{K} \ln \left( {k+1 \over k} \right) - \sum_{k=1}^{K} {1 \over k} \right)=\lim_{K \to \infty} \left( ln(K+1) - \sum_{k=1}^{K} {1 \over k} \right)=\lim_{K \to \infty} \left( ln(K) - \sum_{k=1}^{K} {1 \over k} \right)=\gamma
[/moot]

>> No.4229477

>>4229467
Alright, all doubts gone, congratulations <span class="math">\ddot\smile[/spoiler]

>> No.4229494 [DELETED] 

>>4229438
<div class="math">\frac{2}{\pi}\int_{0}^{\pi /2}\frac{1}{\left ( \theta ^2+\ln \left ( \cos\left ( \theta\right ) \right ) ^2\right ) ^{2n+2}}\, \sqrt{\frac{1}{2}+\frac{1}{2}\sqrt{\frac{1}{2}+\frac{1}{2}\sqrt{\frac{1}{2}+\cdots +\frac{1}{2}\sqrt{\frac{\ln\left ( \cos\left ( \theta\right ) \right ) ^2}{\theta ^2 + \ln\left ( \cos\left ( \theta\right ) \right ) ^2}}}}\, d\theta = \ln (2)^{\frac{1}{2^n}}[/moot]

>> No.4229526

>>4229427
how did you go from the floor of 1/x to 1/k?

>> No.4229528

>>4229438
>>4229438
<div class="math">\frac{2}{\pi}\, \int_{0}^{\pi /2}\frac{1}{\left ( \theta ^2+\ln \left ( \cos\left ( \theta\right ) \right ) ^2\right ) ^{2n+2}}\, \sqrt{\frac{1}{2}+\frac{1}{2}\sqrt{\frac{1}{2}+\frac{1}{2}\sqrt{\frac{1}{2}+\cdots +\frac{1}{2}\sqrt{\frac{\ln\left ( \cos\left ( \theta\right ) \right ) ^2}{\theta ^2 + \ln\left ( \cos\left ( \theta\right ) \right ) ^2}}}}}\, d\theta = \ln (2)^{\frac{1}{2^n}}[/moot]

>> No.4229538

>>4229526
<div class="math">
\int_{1 \over k+1}^{1 \over k} \left\lfloor\frac1x\right\rfloor \mathrm dx=\int_{1 \over k+1}^{1 \over k} (k+1) \mathrm dx=(k+1)\left( {1 \over k} - {1 \over k+1} \right)={1 \over k}
[/moot]

>> No.4229552

>>4229278

That one doesn't look right. Not saying it's wrong, just very unintuitive. Can anyone point me to a derivation?

>> No.4229641

>>4229552
I think this works.
<div class="math">\int_0^{2\pi}e^{\cos\theta}\cos(n\theta-\sin\theta)d\theta = \text{Re}\left [\int_0^{2\pi}e^{\cos\theta}e^{i(n\theta-\sin\theta)}d\theta\right] = \text{Re}\left[\int_0^{2\pi}e^{in\theta}e^{\cos\theta-i\sin\theta}d\theta\right]=\text{Re}\left[\int
_0^{2\pi}\left(e^{i\theta}\right)^ne^{e^{-i\theta}}d\theta\right]=\text{Re}\left[\oint_{|z|=1}z^ne^{
\frac{1}{z}}\frac{dz}{iz}\right]=\text{Re}\left[\frac{1}{i}\cdot2\pi i\ \text{Res}\left(z^{n-1}e^{\frac{1}{z}},0\right)\right]=\frac{2\pi}{n!}[/moot]

>> No.4229650

>>4229641
welp, take two
<div class="math">\int_0^{2\pi}e^{\cos\theta}\cos(n\theta-\sin\theta)d\theta = Re\left [\int_0^{2\pi}e^{\cos\theta}e^{i(n\theta-\sin\theta)}d\theta\right] = Re\left[\int_0^{2\pi}e^{in\theta}e^{\cos\theta-i\sin\theta}d\theta\right]=Re\left[\int_0^{2\pi}\left
(e^{i\theta}\right)^ne^{e^{-i\theta}}d\theta\right]=Re\left[\oint_{|z|=1}z^ne^{\frac{1}{z}}\frac{dz}
{iz}\right]=Re\left[\frac{1}{i}\cdot2\pi i\ Res\left(z^{n-1}e^{\frac{1}{z}},0\right)\right]=\frac{2\pi}{n!}[/moot]

>> No.4229652

>>4229641
\mathrm?

>> No.4229681

Where do you guys learn to solve these? I'm studying maths at uni and I haven't the faintest idea of where to start. Any books you recommend?

>> No.4229702 [DELETED] 

<div class="math">\int_{\pi /2}^{\pi /4} \ln (\ln (\tan (x)))\, dx =\frac{\pi}{4}\, \ln\left ( \frac{4\pi ^3}{\Gamma\left ( \frac{1}{4}\right ) ^4\right ) [/moot]

>> No.4229709

<div class="math">\int_{\pi /2}^{\pi /4} \ln (\ln (\tan (x)))\, dx =\frac{\pi}{4}\, \ln\left ( \frac{4\pi ^3}{\Gamma\left ( \frac{1}{4}\right ) ^4}\right ) [/moot]

>> No.4229769

>>4229650

Yeah I guess. That's pretty cool.

>> No.4229810

>>4229650
Residues are magic.

>> No.4229826 [DELETED] 

>>4229538
thanks. (I accidentally set the floor to 1/(k+1) while do it)

>> No.4229830

>>4229681
most of it is just calc 2 and freshman complex analysis

>> No.4229847

<div class="math">\int_{0}^{1}\int_{0}^{1} \frac{x-1}{\ln (xy) -xy\ln (xy)}\, dx\, dy = \gamma[/moot]
<div class="math">\int_{0}^{1}\int_{0}^{1} \frac{x-1}{\ln (xy) +xy\ln (xy)}\, dx\, dy = \ln\left ( \frac{4}{\pi}\right )[/moot]

>i came

>> No.4229915

<div class="math">\int_{0}^{1}\frac{\arctan\left ( \sqrt{x^2+1}\right ) }{(x^2+1)^{\frac{3}{2}}}\, \mathrm{d}x=\frac{\left ( 1-2\sqrt{2}\right ) \pi +6\sqrt{2}\arctan\left ( \sqrt{2}\right ) }{4}[/moot]
<div class="math">\int_{0}^{1}\frac{\arctan\left ( \sqrt{x^2+2}\right ) }{(x^2+1)\sqrt{x^2+2}}\, \mathrm{d}x=\frac{5}{96}\pi ^2[/moot]

>> No.4229928

<div class="math">\int e^x =\frac{f(u)^n}{\mathrm{d}x}[/moot]

>> No.4229931

<div class="math">\int_0^{\pi/2}\frac{dx}{1+\mathrm{tan}(x)^\alpha} = \frac{\pi}{4}[/moot]

>> No.4229972
File: 50 KB, 440x360, thegame2.jpg [View same] [iqdb] [saucenao] [google]
4229972

>>4229931
>implying that it is true for all <span class="math">\alpha[/spoiler]
>ok, it's true for <span class="math">\alpha \in \mathbb{R}[/spoiler]
>let <span class="math">\alpha = \infty[/spoiler]

>> No.4229983
File: 20 KB, 582x329, 1312856220850.jpg [View same] [iqdb] [saucenao] [google]
4229983

>>4229972

>> No.4229988

>>4229972
You're retarded. Think about what the graph of 1/(1+tan(x)^infinity) would look like. It would be equal to 1 on the interval [0,pi/4), 1/2 at pi/4, and 0 on the interval (pi/4,pi/2]. If you integrate that you still get pi/4.

>also, it is true for all complex alpha

>> No.4229995

>>4229983
>saging a math thread with many interesting identities to prove
>math and science board

>> No.4230006

>>4229995
more like responding to some inane post of someone who is unable to understand simple postulates of the real number system without bumping the thread like an asinine idiot.

it's called a polite sage, as nothing was contributed.

>> No.4230044

<div class="math">-\sqrt{3}\int_{0}^{1}\frac{\ln (x)}{1-x+x^2}\, \mathrm{d}x=2\sum_{k=1}^{\infty}\frac{\sin\left ( \frac{1}{3}k\pi\right ) }{k^3}[/moot]

>> No.4230079 [DELETED] 

>>4229538
then at k = 1
<div class="math">\int_{\frac{1}{2}}^1 \floor{\frac{1}{x}} dx = 1[/moot]? shouldn't it be 1/2?

>> No.4230093

>>4229538
then at k = 1
<div class="math">\int_{\frac{1}{2}}^1 \left\lfloor\frac{1}{x}\right\rfloor dx = 1[/moot]
? shouldn't it be 1/2?

>> No.4230144

>>4230044
I would think that this is pretty easy to prove, as sin(k pi/3)=0 for k=0 mod 3, the sum simplifies to two alternating series and a factor of sqrt(3)/2, which cancels out the coefficients on both sides (and getting rid of that sine). Don't know where to go from there, thoguh