[ 3 / biz / cgl / ck / diy / fa / ic / jp / lit / sci / vr / vt ] [ index / top / reports ] [ become a patron ] [ status ]
2023-11: Warosu is now out of extended maintenance.

/sci/ - Science & Math


View post   

File: 378 KB, 2467x1551, TIMESAND___logoLOGOlogo.png [View same] [iqdb] [saucenao] [google]
11769446 No.11769446 [Reply] [Original]

Consider a number [math]z_0\in\mathbb{C}[/math] such that
[eqn]
z_0=-(\aleph_\mathcal{X}+b)+iy~~,\quad\text{where}\qquad b,y\in\mathbb{R}_0~~.
[/eqn]

Observe that the Euler product form of [math]\zeta[/math]takes [math]z_0[/math] as
[eqn]
\zeta(z_0)=\prod_{p}\cfrac{1}{1-p^{(\aleph_\mathcal{X}+b)-iy}}\nonumber\\
\qquad= \left(\cfrac{1}{1-P^{(\mathcal{X}\aleph_1+b)-iy}} \right) \prod_{p\neq P}\cfrac{1}{1-p^{(\aleph_\mathcal{X}+b)-iy}} \nonumber\\
\qquad=\left(\cfrac{1}{1-\cfrac{\vphantom{\hat1}1}{P^b}\big(P^{\mathcal{X}}\big)^{\!\widehat\infty}\left[ \cos(y\ln P)-i\sin(y\ln P)\right]} \right) \prod_{p\neq P}\cfrac{1}{1-p^{(\aleph_\mathcal{X}+b)-iy}} \nonumber~~.
[/eqn]

Let [math]y\ln P=2n\pi[/math] for some prime [math]P[/math] and [math]n\in\mathbb{N}[/math] or [math]n=0[/math]. Then
[eqn]
\zeta(z_0)=\cfrac{1}{\infty} \prod_{p\neq P}\cfrac{1}{1-p^{(\aleph_\mathcal{X}+b)-iy}}=0~~.
[/eqn]

>> No.11771530

>1/inf
youre retarded. plz stop

>> No.11772552

>>11769446
is [math] \aleph_X+b = \widehat{\infty}-b[/math]?

>> No.11772558

>>11769446
We miss you on /x/ make more threads there

>> No.11772562

>>11772552
and how did you get [math] P^{X\aleph_1 +b} [/math] from [math] p^{\aleph_X +b} [/math]

>> No.11774081
File: 1.93 MB, 400x299, recursion.gif [View same] [iqdb] [saucenao] [google]
11774081

keep the thread alive

>> No.11774089

>>11772552
[math] \mathcal{X}\cdot\widehat\infty=\aleph_\mathcal{X} [/math]

>>11772562
[math] \aleph_1=\widehat\infty [/math]

At first a couple years ago, I decided to take away additive absorption from the non-rea infinite element. Now I took away additive and multiplicative absorption so that [math]\aleph_\mathcal{X}[/math] are the multiplicative fractional parts of the non-absorbing infinite element [math]\widehat\infty[/math]. That's how we have [math]1\cdot\widehat\infty=\aleph_\mathcal{X}[/math].

>> No.11774096

>>11774089
>That's how we have [math]1\cdot\widehat\infty=\aleph_\mathcal{X}[/math]
I meant [math]1\cdot\widehat\infty=\aleph_1[/math]
oops