[ 3 / biz / cgl / ck / diy / fa / ic / jp / lit / sci / vr / vt ] [ index / top / reports ] [ become a patron ] [ status ]
2023-11: Warosu is now out of extended maintenance.

/sci/ - Science & Math

Search:


View post   

>> No.12786523 [View]
File: 8 KB, 332x500, 1542513353870.jpg [View same] [iqdb] [saucenao] [google]
12786523

Specialist: (Fifth year of College):
• The Kodaira-Spencer theory. Deformations of the manifold and solutions of the Maurer-Cartan equation. Maurer-Cartan solvability and Massey operations on the DG-Lie algebra of the cohomology of vector fields. The moduli spaces and their finite dimensionality (see Kontsevich's lectures, or Kodaira's collected works). Bogomolov-Tian-Todorov theorem on deformations of Calabi-Yau.
• Symplectic reduction. The momentum map. The Kempf-Ness theorem.
• Deformations of coherent sheaves and fiber bundles in algebraic geometry. Geometric theory of invariants. The moduli space of bundles on a curve. Stability. The compactifications of Uhlenbeck, Gieseker and Maruyama. The geometric theory of invariants is symplectic reduction (the third edition of Mumford's Geometric Invariant Theory, applications of Francis Kirwan).
• Instantons in four-dimensional geometry. Donaldson's theory. Donaldson's Invariants. Instantons on Kähler surfaces.
• Geometry of complex surfaces. Classification of Kodaira, Kähler and non-Kähler surfaces, Hilbert scheme of points on a surface. The criterion of Castelnuovo-Enriques, the Riemann-Roch formula, the Bogomolov-Miyaoka-Yau inequality. Relations between the numerical invariants of the surface. Elliptic surfaces, Kummer surface, surfaces of type K3 and Enriques.
• Elements of the Mori program: the Kawamata-Viehweg vanishing theorem, theorems on base point freeness, Mori's Cone Theorem (Clemens-Kollar-Mori, "Higher dimensional complex geometry" plus the not translated Kollar-Mori and Kawamata-Matsuki-Masuda).
• Stable bundles as instantons. Yang-Mills equation on a Kahler manifold. The Donaldson-Uhlenbeck-Yau theorem on Yang-Mills metrics on a stable bundle. Its interpretation in terms of symplectic reduction. Stable bundles and instantons on hyper-Kähler manifolds; An explicit solution of the Maurer-Cartan equation in terms of the Green operator.

>> No.12773579 [View]
File: 8 KB, 332x500, 1542513353870.jpg [View same] [iqdb] [saucenao] [google]
12773579

Specialist: (Fifth year of College):
• The Kodaira-Spencer theory. Deformations of the manifold and solutions of the Maurer-Cartan equation. Maurer-Cartan solvability and Massey operations on the DG-Lie algebra of the cohomology of vector fields. The moduli spaces and their finite dimensionality (see Kontsevich's lectures, or Kodaira's collected works). Bogomolov-Tian-Todorov theorem on deformations of Calabi-Yau.
• Symplectic reduction. The momentum map. The Kempf-Ness theorem.
• Deformations of coherent sheaves and fiber bundles in algebraic geometry. Geometric theory of invariants. The moduli space of bundles on a curve. Stability. The compactifications of Uhlenbeck, Gieseker and Maruyama. The geometric theory of invariants is symplectic reduction (the third edition of Mumford's Geometric Invariant Theory, applications of Francis Kirwan).
• Instantons in four-dimensional geometry. Donaldson's theory. Donaldson's Invariants. Instantons on Kähler surfaces.
• Geometry of complex surfaces. Classification of Kodaira, Kähler and non-Kähler surfaces, Hilbert scheme of points on a surface. The criterion of Castelnuovo-Enriques, the Riemann-Roch formula, the Bogomolov-Miyaoka-Yau inequality. Relations between the numerical invariants of the surface. Elliptic surfaces, Kummer surface, surfaces of type K3 and Enriques.
• Elements of the Mori program: the Kawamata-Viehweg vanishing theorem, theorems on base point freeness, Mori's Cone Theorem (Clemens-Kollar-Mori, "Higher dimensional complex geometry" plus the not translated Kollar-Mori and Kawamata-Matsuki-Masuda).
• Stable bundles as instantons. Yang-Mills equation on a Kahler manifold. The Donaldson-Uhlenbeck-Yau theorem on Yang-Mills metrics on a stable bundle. Its interpretation in terms of symplectic reduction. Stable bundles and instantons on hyper-Kähler manifolds; An explicit solution of the Maurer-Cartan equation in terms of the Green operator.

>> No.12730771 [View]
File: 8 KB, 332x500, 1542513353870.jpg [View same] [iqdb] [saucenao] [google]
12730771

Specialist: (Fifth year of College):
• The Kodaira-Spencer theory. Deformations of the manifold and solutions of the Maurer-Cartan equation. Maurer-Cartan solvability and Massey operations on the DG-Lie algebra of the cohomology of vector fields. The moduli spaces and their finite dimensionality (see Kontsevich's lectures, or Kodaira's collected works). Bogomolov-Tian-Todorov theorem on deformations of Calabi-Yau.
• Symplectic reduction. The momentum map. The Kempf-Ness theorem.
• Deformations of coherent sheaves and fiber bundles in algebraic geometry. Geometric theory of invariants. The moduli space of bundles on a curve. Stability. The compactifications of Uhlenbeck, Gieseker and Maruyama. The geometric theory of invariants is symplectic reduction (the third edition of Mumford's Geometric Invariant Theory, applications of Francis Kirwan).
• Instantons in four-dimensional geometry. Donaldson's theory. Donaldson's Invariants. Instantons on Kähler surfaces.
• Geometry of complex surfaces. Classification of Kodaira, Kähler and non-Kähler surfaces, Hilbert scheme of points on a surface. The criterion of Castelnuovo-Enriques, the Riemann-Roch formula, the Bogomolov-Miyaoka-Yau inequality. Relations between the numerical invariants of the surface. Elliptic surfaces, Kummer surface, surfaces of type K3 and Enriques.
• Elements of the Mori program: the Kawamata-Viehweg vanishing theorem, theorems on base point freeness, Mori's Cone Theorem (Clemens-Kollar-Mori, "Higher dimensional complex geometry" plus the not translated Kollar-Mori and Kawamata-Matsuki-Masuda).
• Stable bundles as instantons. Yang-Mills equation on a Kahler manifold. The Donaldson-Uhlenbeck-Yau theorem on Yang-Mills metrics on a stable bundle. Its interpretation in terms of symplectic reduction. Stable bundles and instantons on hyper-Kähler manifolds; An explicit solution of the Maurer-Cartan equation in terms of the Green operator.

>> No.11499340 [View]
File: 8 KB, 332x500, 1584777162375.jpg [View same] [iqdb] [saucenao] [google]
11499340

>>11499202
There are debates among the math community my man, no one here or anywhere can say for certain whether or not it's valid, if you're interested in it so much you should read the 4 papers published by mochizuki and read the debates online then form your own opinion.

>> No.11488564 [View]
File: 8 KB, 332x500, 1580661521447.jpg [View same] [iqdb] [saucenao] [google]
11488564

>>11488325
>What are the last two books called?

>> No.11354465 [View]
File: 8 KB, 332x500, 7.jpg [View same] [iqdb] [saucenao] [google]
11354465

Specialist: (Fifth year of College):
• The Kodaira-Spencer theory. Deformations of the manifold and solutions of the Maurer-Cartan equation. Maurer-Cartan solvability and Massey operations on the DG-Lie algebra of the cohomology of vector fields. The moduli spaces and their finite dimensionality (see Kontsevich's lectures, or Kodaira's collected works). Bogomolov-Tian-Todorov theorem on deformations of Calabi-Yau.
• Symplectic reduction. The momentum map. The Kempf-Ness theorem.
• Deformations of coherent sheaves and fiber bundles in algebraic geometry. Geometric theory of invariants. The moduli space of bundles on a curve. Stability. The compactifications of Uhlenbeck, Gieseker and Maruyama. The geometric theory of invariants is symplectic reduction (the third edition of Mumford's Geometric Invariant Theory, applications of Francis Kirwan).
• Instantons in four-dimensional geometry. Donaldson's theory. Donaldson's Invariants. Instantons on Kähler surfaces.
• Geometry of complex surfaces. Classification of Kodaira, Kähler and non-Kähler surfaces, Hilbert scheme of points on a surface. The criterion of Castelnuovo-Enriques, the Riemann-Roch formula, the Bogomolov-Miyaoka-Yau inequality. Relations between the numerical invariants of the surface. Elliptic surfaces, Kummer surface, surfaces of type K3 and Enriques.
• Elements of the Mori program: the Kawamata-Viehweg vanishing theorem, theorems on base point freeness, Mori's Cone Theorem (Clemens-Kollar-Mori, "Higher dimensional complex geometry" plus the not translated Kollar-Mori and Kawamata-Matsuki-Masuda).
• Stable bundles as instantons. Yang-Mills equation on a Kahler manifold. The Donaldson-Uhlenbeck-Yau theorem on Yang-Mills metrics on a stable bundle. Its interpretation in terms of symplectic reduction. Stable bundles and instantons on hyper-Kähler manifolds; An explicit solution of the Maurer-Cartan equation in terms of the Green operator.

>> No.10782857 [View]
File: 8 KB, 332x500, 1543021864596.jpg [View same] [iqdb] [saucenao] [google]
10782857

>>10782784
Penultimate.

>> No.10162400 [View]
File: 8 KB, 332x500, 1542747629730.jpg [View same] [iqdb] [saucenao] [google]
10162400

>>10162398
Specialist: (Fifth year of College):
• The Kodaira-Spencer theory. Deformations of the manifold and solutions of the Maurer-Cartan equation. Maurer-Cartan solvability and Massey operations on the DG-Lie algebra of the cohomology of vector fields. The moduli spaces and their finite dimensionality (see Kontsevich's lectures, or Kodaira's collected works). Bogomolov-Tian-Todorov theorem on deformations of Calabi-Yau.
• Symplectic reduction. The momentum map. The Kempf-Ness theorem.
• Deformations of coherent sheaves and fiber bundles in algebraic geometry. Geometric theory of invariants. The moduli space of bundles on a curve. Stability. The compactifications of Uhlenbeck, Gieseker and Maruyama. The geometric theory of invariants is symplectic reduction (the third edition of Mumford's Geometric Invariant Theory, applications of Francis Kirwan).
• Instantons in four-dimensional geometry. Donaldson's theory. Donaldson's Invariants. Instantons on Kähler surfaces.
• Geometry of complex surfaces. Classification of Kodaira, Kähler and non-Kähler surfaces, Hilbert scheme of points on a surface. The criterion of Castelnuovo-Enriques, the Riemann-Roch formula, the Bogomolov-Miyaoka-Yau inequality. Relations between the numerical invariants of the surface. Elliptic surfaces, Kummer surface, surfaces of type K3 and Enriques.
• Elements of the Mori program: the Kawamata-Viehweg vanishing theorem, theorems on base point freeness, Mori's Cone Theorem (Clemens-Kollar-Mori, "Higher dimensional complex geometry" plus the not translated Kollar-Mori and Kawamata-Matsuki-Masuda).
• Stable bundles as instantons. Yang-Mills equation on a Kahler manifold. The Donaldson-Uhlenbeck-Yau theorem on Yang-Mills metrics on a stable bundle. Its interpretation in terms of symplectic reduction. Stable bundles and instantons on hyper-Kähler manifolds; An explicit solution of the Maurer-Cartan equation in terms of the Green operator.

>> No.10155440 [View]
File: 8 KB, 332x500, 1542513353870.jpg [View same] [iqdb] [saucenao] [google]
10155440

>>10155438
Specialist: (Fifth year of College):
• The Kodaira-Spencer theory. Deformations of the manifold and solutions of the Maurer-Cartan equation. Maurer-Cartan solvability and Massey operations on the DG-Lie algebra of the cohomology of vector fields. The moduli spaces and their finite dimensionality (see Kontsevich's lectures, or Kodaira's collected works). Bogomolov-Tian-Todorov theorem on deformations of Calabi-Yau.
• Symplectic reduction. The momentum map. The Kempf-Ness theorem.
• Deformations of coherent sheaves and fiber bundles in algebraic geometry. Geometric theory of invariants. The moduli space of bundles on a curve. Stability. The compactifications of Uhlenbeck, Gieseker and Maruyama. The geometric theory of invariants is symplectic reduction (the third edition of Mumford's Geometric Invariant Theory, applications of Francis Kirwan).
• Instantons in four-dimensional geometry. Donaldson's theory. Donaldson's Invariants. Instantons on Kähler surfaces.
• Geometry of complex surfaces. Classification of Kodaira, Kähler and non-Kähler surfaces, Hilbert scheme of points on a surface. The criterion of Castelnuovo-Enriques, the Riemann-Roch formula, the Bogomolov-Miyaoka-Yau inequality. Relations between the numerical invariants of the surface. Elliptic surfaces, Kummer surface, surfaces of type K3 and Enriques.
• Elements of the Mori program: the Kawamata-Viehweg vanishing theorem, theorems on base point freeness, Mori's Cone Theorem (Clemens-Kollar-Mori, "Higher dimensional complex geometry" plus the not translated Kollar-Mori and Kawamata-Matsuki-Masuda).
• Stable bundles as instantons. Yang-Mills equation on a Kahler manifold. The Donaldson-Uhlenbeck-Yau theorem on Yang-Mills metrics on a stable bundle. Its interpretation in terms of symplectic reduction. Stable bundles and instantons on hyper-Kähler manifolds; An explicit solution of the Maurer-Cartan equation in terms of the Green operator.

>> No.10149468 [View]
File: 8 KB, 332x500, 1540661758269.jpg [View same] [iqdb] [saucenao] [google]
10149468

>>10149464
Specialist: (Fifth year of College):
• The Kodaira-Spencer theory. Deformations of the manifold and solutions of the Maurer-Cartan equation. Maurer-Cartan solvability and Massey operations on the DG-Lie algebra of the cohomology of vector fields. The moduli spaces and their finite dimensionality (see Kontsevich's lectures, or Kodaira's collected works). Bogomolov-Tian-Todorov theorem on deformations of Calabi-Yau.
• Symplectic reduction. The momentum map. The Kempf-Ness theorem.
• Deformations of coherent sheaves and fiber bundles in algebraic geometry. Geometric theory of invariants. The moduli space of bundles on a curve. Stability. The compactifications of Uhlenbeck, Gieseker and Maruyama. The geometric theory of invariants is symplectic reduction (the third edition of Mumford's Geometric Invariant Theory, applications of Francis Kirwan).
• Instantons in four-dimensional geometry. Donaldson's theory. Donaldson's Invariants. Instantons on Kähler surfaces.
• Geometry of complex surfaces. Classification of Kodaira, Kähler and non-Kähler surfaces, Hilbert scheme of points on a surface. The criterion of Castelnuovo-Enriques, the Riemann-Roch formula, the Bogomolov-Miyaoka-Yau inequality. Relations between the numerical invariants of the surface. Elliptic surfaces, Kummer surface, surfaces of type K3 and Enriques.
• Elements of the Mori program: the Kawamata-Viehweg vanishing theorem, theorems on base point freeness, Mori's Cone Theorem (Clemens-Kollar-Mori, "Higher dimensional complex geometry" plus the not translated Kollar-Mori and Kawamata-Matsuki-Masuda).
• Stable bundles as instantons. Yang-Mills equation on a Kahler manifold. The Donaldson-Uhlenbeck-Yau theorem on Yang-Mills metrics on a stable bundle. Its interpretation in terms of symplectic reduction. Stable bundles and instantons on hyper-Kähler manifolds; An explicit solution of the Maurer-Cartan equation in terms of the Green operator.

>> No.10107111 [View]
File: 8 KB, 332x500, 1540661758269.jpg [View same] [iqdb] [saucenao] [google]
10107111

>>10107107
Specialist: (Fifth year of College):
• The Kodaira-Spencer theory. Deformations of the manifold and solutions of the Maurer-Cartan equation. Maurer-Cartan solvability and Massey operations on the DG-Lie algebra of the cohomology of vector fields. The moduli spaces and their finite dimensionality (see Kontsevich's lectures, or Kodaira's collected works). Bogomolov-Tian-Todorov theorem on deformations of Calabi-Yau.
• Symplectic reduction. The momentum map. The Kempf-Ness theorem.
• Deformations of coherent sheaves and fiber bundles in algebraic geometry. Geometric theory of invariants. The moduli space of bundles on a curve. Stability. The compactifications of Uhlenbeck, Gieseker and Maruyama. The geometric theory of invariants is symplectic reduction (the third edition of Mumford's Geometric Invariant Theory, applications of Francis Kirwan).
• Instantons in four-dimensional geometry. Donaldson's theory. Donaldson's Invariants. Instantons on Kähler surfaces.
• Geometry of complex surfaces. Classification of Kodaira, Kähler and non-Kähler surfaces, Hilbert scheme of points on a surface. The criterion of Castelnuovo-Enriques, the Riemann-Roch formula, the Bogomolov-Miyaoka-Yau inequality. Relations between the numerical invariants of the surface. Elliptic surfaces, Kummer surface, surfaces of type K3 and Enriques.
• Elements of the Mori program: the Kawamata-Viehweg vanishing theorem, theorems on base point freeness, Mori's Cone Theorem (Clemens-Kollar-Mori, "Higher dimensional complex geometry" plus the not translated Kollar-Mori and Kawamata-Matsuki-Masuda).
• Stable bundles as instantons. Yang-Mills equation on a Kahler manifold. The Donaldson-Uhlenbeck-Yau theorem on Yang-Mills metrics on a stable bundle. Its interpretation in terms of symplectic reduction. Stable bundles and instantons on hyper-Kähler manifolds; An explicit solution of the Maurer-Cartan equation in terms of the Green operator.

>> No.10099489 [View]
File: 8 KB, 332x500, 1540255294760.jpg [View same] [iqdb] [saucenao] [google]
10099489

>>10099485
Specialist: (Fifth year of College):
• The Kodaira-Spencer theory. Deformations of the manifold and solutions of the Maurer-Cartan equation. Maurer-Cartan solvability and Massey operations on the DG-Lie algebra of the cohomology of vector fields. The moduli spaces and their finite dimensionality (see Kontsevich's lectures, or Kodaira's collected works). Bogomolov-Tian-Todorov theorem on deformations of Calabi-Yau.
• Symplectic reduction. The momentum map. The Kempf-Ness theorem.
• Deformations of coherent sheaves and fiber bundles in algebraic geometry. Geometric theory of invariants. The moduli space of bundles on a curve. Stability. The compactifications of Uhlenbeck, Gieseker and Maruyama. The geometric theory of invariants is symplectic reduction (the third edition of Mumford's Geometric Invariant Theory, applications of Francis Kirwan).
• Instantons in four-dimensional geometry. Donaldson's theory. Donaldson's Invariants. Instantons on Kähler surfaces.
• Geometry of complex surfaces. Classification of Kodaira, Kähler and non-Kähler surfaces, Hilbert scheme of points on a surface. The criterion of Castelnuovo-Enriques, the Riemann-Roch formula, the Bogomolov-Miyaoka-Yau inequality. Relations between the numerical invariants of the surface. Elliptic surfaces, Kummer surface, surfaces of type K3 and Enriques.
• Elements of the Mori program: the Kawamata-Viehweg vanishing theorem, theorems on base point freeness, Mori's Cone Theorem (Clemens-Kollar-Mori, "Higher dimensional complex geometry" plus the not translated Kollar-Mori and Kawamata-Matsuki-Masuda).
• Stable bundles as instantons. Yang-Mills equation on a Kahler manifold. The Donaldson-Uhlenbeck-Yau theorem on Yang-Mills metrics on a stable bundle. Its interpretation in terms of symplectic reduction. Stable bundles and instantons on hyper-Kähler manifolds; An explicit solution of the Maurer-Cartan equation in terms of the Green operator.

>> No.10088843 [View]
File: 8 KB, 332x500, 1540135791348.jpg [View same] [iqdb] [saucenao] [google]
10088843

>>10088836
Specialist: (Fifth year of College):
• The Kodaira-Spencer theory. Deformations of the manifold and solutions of the Maurer-Cartan equation. Maurer-Cartan solvability and Massey operations on the DG-Lie algebra of the cohomology of vector fields. The moduli spaces and their finite dimensionality (see Kontsevich's lectures, or Kodaira's collected works). Bogomolov-Tian-Todorov theorem on deformations of Calabi-Yau.
• Symplectic reduction. The momentum map. The Kempf-Ness theorem.
• Deformations of coherent sheaves and fiber bundles in algebraic geometry. Geometric theory of invariants. The moduli space of bundles on a curve. Stability. The compactifications of Uhlenbeck, Gieseker and Maruyama. The geometric theory of invariants is symplectic reduction (the third edition of Mumford's Geometric Invariant Theory, applications of Francis Kirwan).
• Instantons in four-dimensional geometry. Donaldson's theory. Donaldson's Invariants. Instantons on Kähler surfaces.
• Geometry of complex surfaces. Classification of Kodaira, Kähler and non-Kähler surfaces, Hilbert scheme of points on a surface. The criterion of Castelnuovo-Enriques, the Riemann-Roch formula, the Bogomolov-Miyaoka-Yau inequality. Relations between the numerical invariants of the surface. Elliptic surfaces, Kummer surface, surfaces of type K3 and Enriques.
• Elements of the Mori program: the Kawamata-Viehweg vanishing theorem, theorems on base point freeness, Mori's Cone Theorem (Clemens-Kollar-Mori, "Higher dimensional complex geometry" plus the not translated Kollar-Mori and Kawamata-Matsuki-Masuda).
• Stable bundles as instantons. Yang-Mills equation on a Kahler manifold. The Donaldson-Uhlenbeck-Yau theorem on Yang-Mills metrics on a stable bundle. Its interpretation in terms of symplectic reduction. Stable bundles and instantons on hyper-Kähler manifolds; An explicit solution of the Maurer-Cartan equation in terms of the Green operator.

>> No.10085401 [View]
File: 8 KB, 332x500, 1538335828313.jpg [View same] [iqdb] [saucenao] [google]
10085401

>>10085397
Specialist: (Fifth year of College):
• The Kodaira-Spencer theory. Deformations of the manifold and solutions of the Maurer-Cartan equation. Maurer-Cartan solvability and Massey operations on the DG-Lie algebra of the cohomology of vector fields. The moduli spaces and their finite dimensionality (see Kontsevich's lectures, or Kodaira's collected works). Bogomolov-Tian-Todorov theorem on deformations of Calabi-Yau.
• Symplectic reduction. The momentum map. The Kempf-Ness theorem.
• Deformations of coherent sheaves and fiber bundles in algebraic geometry. Geometric theory of invariants. The moduli space of bundles on a curve. Stability. The compactifications of Uhlenbeck, Gieseker and Maruyama. The geometric theory of invariants is symplectic reduction (the third edition of Mumford's Geometric Invariant Theory, applications of Francis Kirwan).
• Instantons in four-dimensional geometry. Donaldson's theory. Donaldson's Invariants. Instantons on Kähler surfaces.
• Geometry of complex surfaces. Classification of Kodaira, Kähler and non-Kähler surfaces, Hilbert scheme of points on a surface. The criterion of Castelnuovo-Enriques, the Riemann-Roch formula, the Bogomolov-Miyaoka-Yau inequality. Relations between the numerical invariants of the surface. Elliptic surfaces, Kummer surface, surfaces of type K3 and Enriques.
• Elements of the Mori program: the Kawamata-Viehweg vanishing theorem, theorems on base point freeness, Mori's Cone Theorem (Clemens-Kollar-Mori, "Higher dimensional complex geometry" plus the not translated Kollar-Mori and Kawamata-Matsuki-Masuda).
• Stable bundles as instantons. Yang-Mills equation on a Kahler manifold. The Donaldson-Uhlenbeck-Yau theorem on Yang-Mills metrics on a stable bundle. Its interpretation in terms of symplectic reduction. Stable bundles and instantons on hyper-Kähler manifolds; An explicit solution of the Maurer-Cartan equation in terms of the Green operator.

>> No.10039428 [View]
File: 8 KB, 332x500, 1535679155292.jpg [View same] [iqdb] [saucenao] [google]
10039428

>>10039424
Specialist: (Fifth year of College):
• The Kodaira-Spencer theory. Deformations of the manifold and solutions of the Maurer-Cartan equation. Maurer-Cartan solvability and Massey operations on the DG-Lie algebra of the cohomology of vector fields. The moduli spaces and their finite dimensionality (see Kontsevich's lectures, or Kodaira's collected works). Bogomolov-Tian-Todorov theorem on deformations of Calabi-Yau.
• Symplectic reduction. The momentum map. The Kempf-Ness theorem.
• Deformations of coherent sheaves and fiber bundles in algebraic geometry. Geometric theory of invariants. The moduli space of bundles on a curve. Stability. The compactifications of Uhlenbeck, Gieseker and Maruyama. The geometric theory of invariants is symplectic reduction (the third edition of Mumford's Geometric Invariant Theory, applications of Francis Kirwan).
• Instantons in four-dimensional geometry. Donaldson's theory. Donaldson's Invariants. Instantons on Kähler surfaces.
• Geometry of complex surfaces. Classification of Kodaira, Kähler and non-Kähler surfaces, Hilbert scheme of points on a surface. The criterion of Castelnuovo-Enriques, the Riemann-Roch formula, the Bogomolov-Miyaoka-Yau inequality. Relations between the numerical invariants of the surface. Elliptic surfaces, Kummer surface, surfaces of type K3 and Enriques.
• Elements of the Mori program: the Kawamata-Viehweg vanishing theorem, theorems on base point freeness, Mori's Cone Theorem (Clemens-Kollar-Mori, "Higher dimensional complex geometry" plus the not translated Kollar-Mori and Kawamata-Matsuki-Masuda).
• Stable bundles as instantons. Yang-Mills equation on a Kahler manifold. The Donaldson-Uhlenbeck-Yau theorem on Yang-Mills metrics on a stable bundle. Its interpretation in terms of symplectic reduction. Stable bundles and instantons on hyper-Kähler manifolds; An explicit solution of the Maurer-Cartan equation in terms of the Green operator.

>> No.9969694 [View]
File: 8 KB, 332x500, 1530142301656.jpg [View same] [iqdb] [saucenao] [google]
9969694

>>9969691
Specialist: (Fifth year of College):
• The Kodaira-Spencer theory. Deformations of the manifold and solutions of the Maurer-Cartan equation. Maurer-Cartan solvability and Massey operations on the DG-Lie algebra of the cohomology of vector fields. The moduli spaces and their finite dimensionality (see Kontsevich's lectures, or Kodaira's collected works). Bogomolov-Tian-Todorov theorem on deformations of Calabi-Yau.
• Symplectic reduction. The momentum map. The Kempf-Ness theorem.
• Deformations of coherent sheaves and fiber bundles in algebraic geometry. Geometric theory of invariants. The moduli space of bundles on a curve. Stability. The compactifications of Uhlenbeck, Gieseker and Maruyama. The geometric theory of invariants is symplectic reduction (the third edition of Mumford's Geometric Invariant Theory, applications of Francis Kirwan).
• Instantons in four-dimensional geometry. Donaldson's theory. Donaldson's Invariants. Instantons on Kähler surfaces.
• Geometry of complex surfaces. Classification of Kodaira, Kähler and non-Kähler surfaces, Hilbert scheme of points on a surface. The criterion of Castelnuovo-Enriques, the Riemann-Roch formula, the Bogomolov-Miyaoka-Yau inequality. Relations between the numerical invariants of the surface. Elliptic surfaces, Kummer surface, surfaces of type K3 and Enriques.
• Elements of the Mori program: the Kawamata-Viehweg vanishing theorem, theorems on base point freeness, Mori's Cone Theorem (Clemens-Kollar-Mori, "Higher dimensional complex geometry" plus the not translated Kollar-Mori and Kawamata-Matsuki-Masuda).
• Stable bundles as instantons. Yang-Mills equation on a Kahler manifold. The Donaldson-Uhlenbeck-Yau theorem on Yang-Mills metrics on a stable bundle. Its interpretation in terms of symplectic reduction. Stable bundles and instantons on hyper-Kähler manifolds; An explicit solution of the Maurer-Cartan equation in terms of the Green operator.

>> No.9835334 [View]
File: 8 KB, 332x500, 1529714304458.jpg [View same] [iqdb] [saucenao] [google]
9835334

Specialist: (Fifth year of College):
• The Kodaira-Spencer theory. Deformations of the manifold and solutions of the Maurer-Cartan equation. Maurer-Cartan solvability and Massey operations on the DG-Lie algebra of the cohomology of vector fields. The moduli spaces and their finite dimensionality (see Kontsevich's lectures, or Kodaira's collected works). Bogomolov-Tian-Todorov theorem on deformations of Calabi-Yau.
• Symplectic reduction. The momentum map. The Kempf-Ness theorem.
• Deformations of coherent sheaves and fiber bundles in algebraic geometry. Geometric theory of invariants. The moduli space of bundles on a curve. Stability. The compactifications of Uhlenbeck, Gieseker and Maruyama. The geometric theory of invariants is symplectic reduction (the third edition of Mumford's Geometric Invariant Theory, applications of Francis Kirwan).
• Instantons in four-dimensional geometry. Donaldson's theory. Donaldson's Invariants. Instantons on Kähler surfaces.
• Geometry of complex surfaces. Classification of Kodaira, Kähler and non-Kähler surfaces, Hilbert scheme of points on a surface. The criterion of Castelnuovo-Enriques, the Riemann-Roch formula, the Bogomolov-Miyaoka-Yau inequality. Relations between the numerical invariants of the surface. Elliptic surfaces, Kummer surface, surfaces of type K3 and Enriques.
• Elements of the Mori program: the Kawamata-Viehweg vanishing theorem, theorems on base point freeness, Mori's Cone Theorem (Clemens-Kollar-Mori, "Higher dimensional complex geometry" plus the not translated Kollar-Mori and Kawamata-Matsuki-Masuda).
• Stable bundles as instantons. Yang-Mills equation on a Kahler manifold. The Donaldson-Uhlenbeck-Yau theorem on Yang-Mills metrics on a stable bundle. Its interpretation in terms of symplectic reduction. Stable bundles and instantons on hyper-Kähler manifolds; An explicit solution of the Maurer-Cartan equation in terms of the Green operator.

>> No.9825488 [View]
File: 8 KB, 332x500, 1529166447605.jpg [View same] [iqdb] [saucenao] [google]
9825488

>>9825485
Specialist: (Fifth year of College):
• The Kodaira-Spencer theory. Deformations of the manifold and solutions of the Maurer-Cartan equation. Maurer-Cartan solvability and Massey operations on the DG-Lie algebra of the cohomology of vector fields. The moduli spaces and their finite dimensionality (see Kontsevich's lectures, or Kodaira's collected works). Bogomolov-Tian-Todorov theorem on deformations of Calabi-Yau.
• Symplectic reduction. The momentum map. The Kempf-Ness theorem.
• Deformations of coherent sheaves and fiber bundles in algebraic geometry. Geometric theory of invariants. The moduli space of bundles on a curve. Stability. The compactifications of Uhlenbeck, Gieseker and Maruyama. The geometric theory of invariants is symplectic reduction (the third edition of Mumford's Geometric Invariant Theory, applications of Francis Kirwan).
• Instantons in four-dimensional geometry. Donaldson's theory. Donaldson's Invariants. Instantons on Kähler surfaces.
• Geometry of complex surfaces. Classification of Kodaira, Kähler and non-Kähler surfaces, Hilbert scheme of points on a surface. The criterion of Castelnuovo-Enriques, the Riemann-Roch formula, the Bogomolov-Miyaoka-Yau inequality. Relations between the numerical invariants of the surface. Elliptic surfaces, Kummer surface, surfaces of type K3 and Enriques.
• Elements of the Mori program: the Kawamata-Viehweg vanishing theorem, theorems on base point freeness, Mori's Cone Theorem (Clemens-Kollar-Mori, "Higher dimensional complex geometry" plus the not translated Kollar-Mori and Kawamata-Matsuki-Masuda).
• Stable bundles as instantons. Yang-Mills equation on a Kahler manifold. The Donaldson-Uhlenbeck-Yau theorem on Yang-Mills metrics on a stable bundle. Its interpretation in terms of symplectic reduction. Stable bundles and instantons on hyper-Kähler manifolds; An explicit solution of the Maurer-Cartan equation in terms of the Green operator.

>> No.9815135 [View]
File: 8 KB, 332x500, 1529166447605.jpg [View same] [iqdb] [saucenao] [google]
9815135

>>9815134
Specialist: (Fifth year of College):
• The Kodaira-Spencer theory. Deformations of the manifold and solutions of the Maurer-Cartan equation. Maurer-Cartan solvability and Massey operations on the DG-Lie algebra of the cohomology of vector fields. The moduli spaces and their finite dimensionality (see Kontsevich's lectures, or Kodaira's collected works). Bogomolov-Tian-Todorov theorem on deformations of Calabi-Yau.
• Symplectic reduction. The momentum map. The Kempf-Ness theorem.
• Deformations of coherent sheaves and fiber bundles in algebraic geometry. Geometric theory of invariants. The moduli space of bundles on a curve. Stability. The compactifications of Uhlenbeck, Gieseker and Maruyama. The geometric theory of invariants is symplectic reduction (the third edition of Mumford's Geometric Invariant Theory, applications of Francis Kirwan).
• Instantons in four-dimensional geometry. Donaldson's theory. Donaldson's Invariants. Instantons on Kähler surfaces.
• Geometry of complex surfaces. Classification of Kodaira, Kähler and non-Kähler surfaces, Hilbert scheme of points on a surface. The criterion of Castelnuovo-Enriques, the Riemann-Roch formula, the Bogomolov-Miyaoka-Yau inequality. Relations between the numerical invariants of the surface. Elliptic surfaces, Kummer surface, surfaces of type K3 and Enriques.
• Elements of the Mori program: the Kawamata-Viehweg vanishing theorem, theorems on base point freeness, Mori's Cone Theorem (Clemens-Kollar-Mori, "Higher dimensional complex geometry" plus the not translated Kollar-Mori and Kawamata-Matsuki-Masuda).
• Stable bundles as instantons. Yang-Mills equation on a Kahler manifold. The Donaldson-Uhlenbeck-Yau theorem on Yang-Mills metrics on a stable bundle. Its interpretation in terms of symplectic reduction. Stable bundles and instantons on hyper-Kähler manifolds; An explicit solution of the Maurer-Cartan equation in terms of the Green operator.

>> No.9813235 [View]
File: 8 KB, 332x500, 1527961379407.jpg [View same] [iqdb] [saucenao] [google]
9813235

>>9813233
Specialist: (Fifth year of College):
• The Kodaira-Spencer theory. Deformations of the manifold and solutions of the Maurer-Cartan equation. Maurer-Cartan solvability and Massey operations on the DG-Lie algebra of the cohomology of vector fields. The moduli spaces and their finite dimensionality (see Kontsevich's lectures, or Kodaira's collected works). Bogomolov-Tian-Todorov theorem on deformations of Calabi-Yau.
• Symplectic reduction. The momentum map. The Kempf-Ness theorem.
• Deformations of coherent sheaves and fiber bundles in algebraic geometry. Geometric theory of invariants. The moduli space of bundles on a curve. Stability. The compactifications of Uhlenbeck, Gieseker and Maruyama. The geometric theory of invariants is symplectic reduction (the third edition of Mumford's Geometric Invariant Theory, applications of Francis Kirwan).
• Instantons in four-dimensional geometry. Donaldson's theory. Donaldson's Invariants. Instantons on Kähler surfaces.
• Geometry of complex surfaces. Classification of Kodaira, Kähler and non-Kähler surfaces, Hilbert scheme of points on a surface. The criterion of Castelnuovo-Enriques, the Riemann-Roch formula, the Bogomolov-Miyaoka-Yau inequality. Relations between the numerical invariants of the surface. Elliptic surfaces, Kummer surface, surfaces of type K3 and Enriques.
• Elements of the Mori program: the Kawamata-Viehweg vanishing theorem, theorems on base point freeness, Mori's Cone Theorem (Clemens-Kollar-Mori, "Higher dimensional complex geometry" plus the not translated Kollar-Mori and Kawamata-Matsuki-Masuda).
• Stable bundles as instantons. Yang-Mills equation on a Kahler manifold. The Donaldson-Uhlenbeck-Yau theorem on Yang-Mills metrics on a stable bundle. Its interpretation in terms of symplectic reduction. Stable bundles and instantons on hyper-Kähler manifolds; An explicit solution of the Maurer-Cartan equation in terms of the Green operator.

>> No.9813043 [View]
File: 8 KB, 332x500, 1527961379407.jpg [View same] [iqdb] [saucenao] [google]
9813043

>>9813042
Specialist: (Fifth year of College):
• The Kodaira-Spencer theory. Deformations of the manifold and solutions of the Maurer-Cartan equation. Maurer-Cartan solvability and Massey operations on the DG-Lie algebra of the cohomology of vector fields. The moduli spaces and their finite dimensionality (see Kontsevich's lectures, or Kodaira's collected works). Bogomolov-Tian-Todorov theorem on deformations of Calabi-Yau.
• Symplectic reduction. The momentum map. The Kempf-Ness theorem.
• Deformations of coherent sheaves and fiber bundles in algebraic geometry. Geometric theory of invariants. The moduli space of bundles on a curve. Stability. The compactifications of Uhlenbeck, Gieseker and Maruyama. The geometric theory of invariants is symplectic reduction (the third edition of Mumford's Geometric Invariant Theory, applications of Francis Kirwan).
• Instantons in four-dimensional geometry. Donaldson's theory. Donaldson's Invariants. Instantons on Kähler surfaces.
• Geometry of complex surfaces. Classification of Kodaira, Kähler and non-Kähler surfaces, Hilbert scheme of points on a surface. The criterion of Castelnuovo-Enriques, the Riemann-Roch formula, the Bogomolov-Miyaoka-Yau inequality. Relations between the numerical invariants of the surface. Elliptic surfaces, Kummer surface, surfaces of type K3 and Enriques.
• Elements of the Mori program: the Kawamata-Viehweg vanishing theorem, theorems on base point freeness, Mori's Cone Theorem (Clemens-Kollar-Mori, "Higher dimensional complex geometry" plus the not translated Kollar-Mori and Kawamata-Matsuki-Masuda).
• Stable bundles as instantons. Yang-Mills equation on a Kahler manifold. The Donaldson-Uhlenbeck-Yau theorem on Yang-Mills metrics on a stable bundle. Its interpretation in terms of symplectic reduction. Stable bundles and instantons on hyper-Kähler manifolds; An explicit solution of the Maurer-Cartan equation in terms of the Green operator.

>> No.9784441 [View]
File: 8 KB, 332x500, 1527618590155.jpg [View same] [iqdb] [saucenao] [google]
9784441

>>9784438
Specialist: (Fifth year of College):
• The Kodaira-Spencer theory. Deformations of the manifold and solutions of the Maurer-Cartan equation. Maurer-Cartan solvability and Massey operations on the DG-Lie algebra of the cohomology of vector fields. The moduli spaces and their finite dimensionality (see Kontsevich's lectures, or Kodaira's collected works). Bogomolov-Tian-Todorov theorem on deformations of Calabi-Yau.
• Symplectic reduction. The momentum map. The Kempf-Ness theorem.
• Deformations of coherent sheaves and fiber bundles in algebraic geometry. Geometric theory of invariants. The moduli space of bundles on a curve. Stability. The compactifications of Uhlenbeck, Gieseker and Maruyama. The geometric theory of invariants is symplectic reduction (the third edition of Mumford's Geometric Invariant Theory, applications of Francis Kirwan).
• Instantons in four-dimensional geometry. Donaldson's theory. Donaldson's Invariants. Instantons on Kähler surfaces.
• Geometry of complex surfaces. Classification of Kodaira, Kähler and non-Kähler surfaces, Hilbert scheme of points on a surface. The criterion of Castelnuovo-Enriques, the Riemann-Roch formula, the Bogomolov-Miyaoka-Yau inequality. Relations between the numerical invariants of the surface. Elliptic surfaces, Kummer surface, surfaces of type K3 and Enriques.
• Elements of the Mori program: the Kawamata-Viehweg vanishing theorem, theorems on base point freeness, Mori's Cone Theorem (Clemens-Kollar-Mori, "Higher dimensional complex geometry" plus the not translated Kollar-Mori and Kawamata-Matsuki-Masuda).
• Stable bundles as instantons. Yang-Mills equation on a Kahler manifold. The Donaldson-Uhlenbeck-Yau theorem on Yang-Mills metrics on a stable bundle. Its interpretation in terms of symplectic reduction. Stable bundles and instantons on hyper-Kähler manifolds; An explicit solution of the Maurer-Cartan equation in terms of the Green operator.

>> No.9776000 [View]
File: 8 KB, 332x500, 1527114060373.jpg [View same] [iqdb] [saucenao] [google]
9776000

>>9775999
Specialist: (Fifth year of College):
• The Kodaira-Spencer theory. Deformations of the manifold and solutions of the Maurer-Cartan equation. Maurer-Cartan solvability and Massey operations on the DG-Lie algebra of the cohomology of vector fields. The moduli spaces and their finite dimensionality (see Kontsevich's lectures, or Kodaira's collected works). Bogomolov-Tian-Todorov theorem on deformations of Calabi-Yau.
• Symplectic reduction. The momentum map. The Kempf-Ness theorem.
• Deformations of coherent sheaves and fiber bundles in algebraic geometry. Geometric theory of invariants. The moduli space of bundles on a curve. Stability. The compactifications of Uhlenbeck, Gieseker and Maruyama. The geometric theory of invariants is symplectic reduction (the third edition of Mumford's Geometric Invariant Theory, applications of Francis Kirwan).
• Instantons in four-dimensional geometry. Donaldson's theory. Donaldson's Invariants. Instantons on Kähler surfaces.
• Geometry of complex surfaces. Classification of Kodaira, Kähler and non-Kähler surfaces, Hilbert scheme of points on a surface. The criterion of Castelnuovo-Enriques, the Riemann-Roch formula, the Bogomolov-Miyaoka-Yau inequality. Relations between the numerical invariants of the surface. Elliptic surfaces, Kummer surface, surfaces of type K3 and Enriques.
• Elements of the Mori program: the Kawamata-Viehweg vanishing theorem, theorems on base point freeness, Mori's Cone Theorem (Clemens-Kollar-Mori, "Higher dimensional complex geometry" plus the not translated Kollar-Mori and Kawamata-Matsuki-Masuda).
• Stable bundles as instantons. Yang-Mills equation on a Kahler manifold. The Donaldson-Uhlenbeck-Yau theorem on Yang-Mills metrics on a stable bundle. Its interpretation in terms of symplectic reduction. Stable bundles and instantons on hyper-Kähler manifolds; An explicit solution of the Maurer-Cartan equation in terms of the Green operator.

>> No.9775835 [View]
File: 8 KB, 332x500, 1527114060373.jpg [View same] [iqdb] [saucenao] [google]
9775835

>>9775832
Specialist: (Fifth year of College):
• The Kodaira-Spencer theory. Deformations of the manifold and solutions of the Maurer-Cartan equation. Maurer-Cartan solvability and Massey operations on the DG-Lie algebra of the cohomology of vector fields. The moduli spaces and their finite dimensionality (see Kontsevich's lectures, or Kodaira's collected works). Bogomolov-Tian-Todorov theorem on deformations of Calabi-Yau.
• Symplectic reduction. The momentum map. The Kempf-Ness theorem.
• Deformations of coherent sheaves and fiber bundles in algebraic geometry. Geometric theory of invariants. The moduli space of bundles on a curve. Stability. The compactifications of Uhlenbeck, Gieseker and Maruyama. The geometric theory of invariants is symplectic reduction (the third edition of Mumford's Geometric Invariant Theory, applications of Francis Kirwan).
• Instantons in four-dimensional geometry. Donaldson's theory. Donaldson's Invariants. Instantons on Kähler surfaces.
• Geometry of complex surfaces. Classification of Kodaira, Kähler and non-Kähler surfaces, Hilbert scheme of points on a surface. The criterion of Castelnuovo-Enriques, the Riemann-Roch formula, the Bogomolov-Miyaoka-Yau inequality. Relations between the numerical invariants of the surface. Elliptic surfaces, Kummer surface, surfaces of type K3 and Enriques.
• Elements of the Mori program: the Kawamata-Viehweg vanishing theorem, theorems on base point freeness, Mori's Cone Theorem (Clemens-Kollar-Mori, "Higher dimensional complex geometry" plus the not translated Kollar-Mori and Kawamata-Matsuki-Masuda).
• Stable bundles as instantons. Yang-Mills equation on a Kahler manifold. The Donaldson-Uhlenbeck-Yau theorem on Yang-Mills metrics on a stable bundle. Its interpretation in terms of symplectic reduction. Stable bundles and instantons on hyper-Kähler manifolds; An explicit solution of the Maurer-Cartan equation in terms of the Green operator.

Navigation
View posts[+24][+48][+96]