[ 3 / biz / cgl / ck / diy / fa / ic / jp / lit / sci / vr / vt ] [ index / top / reports ] [ become a patron ] [ status ]
2023-11: Warosu is now out of extended maintenance.

/sci/ - Science & Math

Search:


View post   

>> No.14582823 [View]
File: 248 KB, 1116x900, 1116px-Standard_Model_of_Elementary_Particles_+_Gravity.svg.png [View same] [iqdb] [saucenao] [google]
14582823

>>14582738

To give you an idea, unambiguous detection of individual gravitons, if they exist: though not prohibited by any fundamental law, is impossible with any physically reasonable detector. The reason is the extremely low cross section for the interaction of gravitons with matter. For example, a detector with the mass of Jupiter and 100% efficiency, placed in close orbit around a neutron star, would only be expected to observe one graviton every 10 years, even under the most favorable conditions. It would be impossible to discriminate these events from the background of neutrinos, since the dimensions of the required neutrino shield would ensure collapse into a black hole.

LIGO and Virgo collaborations' observations have directly detected gravitational waves. Others have postulated that graviton scattering yields gravitational waves as particle interactions yield coherent states. Although these experiments cannot detect individual gravitons, they might provide information about certain properties of the graviton. For example, if gravitational waves were observed to propagate slower than C (the speed of light in a vacuum), that would imply that the graviton has mass. Recent observations of gravitational waves have put an upper bound of 1.2×10−22 eV/c2 on the graviton's mass. Astronomical observations of the kinematics of galaxies, especially the galaxy rotation problem and modified Newtonian dynamics, might point toward gravitons having non-zero mass.

Navigation
View posts[+24][+48][+96]